ruggedized 3-phase single-phase motor drives

Buying a Ruggedized Motor Drive: 3-Phase or Single-Phase

Buying a ruggedized electric motor drive, 3-phase or single-phase is no easy task these days.  Ruggedized motor drives fall within the overall category of variable frequency drives, but the similarity stops there. Ruggedized motor drives are designed to meet extreme operating conditions for temperature, altitude, shock, etc. Off-the-shelf motor drives are designed to meet general commercial and industrial operating conditions and to withstand common carrier and UPS shipping conditions.

Many companies go through numerous off-the-shelf drives before they realize they need a custom, ruggedized motor drive. The telltale signs of this are, failure during deployment, failure after traveling to a site, not starting in the winter, over-temperature tripping, downtime, sup-par operating performance, customer complaints, and more.  Finding the right motor drive to meet your demanding requirements can be a bit like looking for a needle in a haystack, but once you find the right manufacturer and right ruggedized motor drive, you will be rewarded with a lower total cost of ownership and higher customer satisfaction.

Ruggedized motor drives are custom variable frequency drives, designed to meet specific operating requirements. Examples of extreme motor drive requirements include:

  • Input/output frequencies up to 400Hz
  • Temperature range down to -40C, -40F. Up to   +55C, +60C, +65C
  • Continuous Vibration up to  2grms 
  • Shock (drop, near detonation) up to 40g  
  • Humidity up to 95% non-condensing
  • Stall prevention
  • Auto restart
  • Operation at Altitudes up to 14,000 ft.

Invention House builds American-made ruggedized motor drives that as a baseline are designed to meet one or more of the above specifications. These conditions also form the basis of military specification (mil-spec) motor drives. If a drive is built to meet mil-spec conditions, it will likely survive any industrial or commercial application.

Invention House ruggedized motor drives go one step further.  Our motor drives are built with integrated functionality to reduce the number of boards in a system, increasing reliability.  Onboard intelligence can take input from the command and from sensors to control not just the motor but also relays, and solenoids. In some cases, our drive is the only electronics necessary in the system. For example, one client needed a motor controller to maintain a constant air-fuel ratio at a high altitude. We designed a drive to do that and to test the performance of the ruggedized motor drive, the client strapped the running blower onto the back of a truck and drove it up Pikes Peak – the drive performed flawlessly and the blower speed automatically adjusted as the altitude increased. 

Another important factor when sourcing a ruggedized motor drive is the nature of the supplier.  Large motor drive suppliers and smaller divisions of a large, multinational company typically avoid custom motor drive work. Large companies need volume to keep their lines running. Smaller companies make the best independent motor drive manufacturers because they are more adept at meeting custom drive requirements.  In addition, when working with a smaller, independent motor drive manufacturer the buyer will have direct access to the drive designer and company leadership – a huge plus when trying to get your custom motor drive needs to be met. Invention House is just such a company with over 22 years of experience designing and manufacturing custom, ruggedized motor drives. Invention House meets Federal “small-company” purchasing requirements and our customers have the luxury of speaking directly with our drive engineers and leadership. If your company is searching for a ruggedized motor drive supplier, we invite you to connect with Invention House.

Conformal coating inspection webinar

Conformal Coating Failure Webinar

Watch the conformal coating webinar recording now, on-demand.

Bob Willis Conformal Coating Expert
Bob Willis 

On September 14th, 2022, Invention House hosted the Conformal Coating Failures: Causes & Cures webinar 

Our speaker was Bob Willis, a world-recognized expert in conformal coating and PCB assembly. Bob shared his decades of experience in diagnosing and solving conformal coating and PCB assembly issues.

Attendees learned about various conformal coating methods and their benefits and drawbacks, including the new selective brush-coating robot, the Raphael 4004 from Invention House. Conformal coating has provided benefits to the industry for many years either in the high-reliability market sector or where products have to deal with extreme environmental conditions or simply in consumer applications.

Bonus! Download a FREE set of Bob’s wall charts on conformal coating inspection and defects.

This webinar provided a simple guide to the use of coatings, their application, and process, and some of the common inspection and product failures, including topics on:

  • Why Conformal Coat
  • Clean or No Clean Coating Process Options
  • Testing & Evaluation of Coatings
  • Inspection & Quality Control of Coating
  • Inspection of coatings & methods
  • Rework & repair of board assemblies
  • Most common failures of coatings and field failures

James Webb Telescope Shipping Container Supported by Invention House Motor Drive

James Webb Shipping Container STTARS
STTARS arrival at Ellingon Airport, TX.
Image Credit: NASA/Chris Gunn
Invention House is pleased to share the news that we provided custom 400 Hz electric motor drives for the protective container for the James Webb Telescope. The telescope was transported all over the world inside an enormous climate-controlled container, called STARRS (Space Telescope Transporter for Air, Road, and Sea).
The custom 400 Hz motor drive system supplied by Invention House allowed the container’s air conditioning system to operate anywhere in the world, on the road, and in the air. It accepted power supply at 50hz,60hz, or 400hz and delivered a steady 60hz to the compressor and fans. 
NASA had very tight specifications on the allowable temperature and humidity excursions within the container, also known as the James Webb Telescope “cocoon.”
  • The telescope, cocoon, air conditioners, and generators were mounted to a large custom flatbed semi-trailer.
  • On the highway, diesel generators provided 60hz power while in the air the C5’s turbine alternators provided 400hz power. The James Webb telescope traveled to Europe where the supply is 50hz.
  • Invention House provided 14kw and 2kw drives for the compressor and fans. The drives were custom engineered to withstand the vibration, temperature, and humidity extremes of being on a tractor trailer and in flight.
The red arrow shows the location of Invention House 400 Hz drives on the James Webb STTARS container.
The system was in service for over 4 years and traveled over 15,000 miles (24,160 km) with several stops in the US, Europe, and finally landing in French Guyana South America from where the James Webb Telescope was launched. The rocket was an Ariane 5 from the European Space Agency. Rockets with their heavy payloads are often launched from near the equator where the surface of the earth is spinning fastest, giving the rockets an extra boost.
NASA reported no issues with the system.

Source for 20hp, 400hz, 230v Drive for OEM Applications

Invention House is a reliable source for 20hp, 230-volt, 400hz motor control drives for OEM application. Invention House has been designing and building custom motor drives for over 20 years. We have built 400 hz aircraft variable frequency drive drives for commercial and military applications, including demanding environments such as desert conditions and aviation.

Our speciality is custom motor drives, where we integrate the drive, power supply, and PLC on one or two boards. 

Application for our custom, reliable 3-phase 230-volt, 400hz (input / outbput) motor drives include:

  • Pumps
  • Fans
  • Hydraulics
  • Conveyor System
  • Winches
  • Aviation-based motors
  • Converting 400hz to 60hz

For 3-phase drive pricing and full specifications, please contact Phil Langhorst Contact Invention House.

Invention House 3-phase, 230volt drives are designed to meet demanding specs, including ambient temperatures from -45c to +55c, and withstand 40g shock and 2g rms vibration. This drive supports 400hz input or output. Drive control is set up through standard terminals or Modbus.  Our 3-phase, 230-volt drives require minimal cooling – just 5 cfm across the heat sink fins.

Invention House Request Quote

DC Motor Drive Troubleshooting Guide

DC Motor Drive Troubleshooting Guide

If you are commissioning a drive, and the motor does not run, or run properly, you must determine if the problem is the drive, the motor, or the wiring. Executing the basic motor drive troubleshooting checks in a methodical order will help rule out what’s good and pinpoint what’s wrong.  to help execute those motor drive diagnostic steps.  This guide is specifically written to quickly walk you through steps where the display is dead, motor is not running, or motor is running incorrectly. Motor Drive Troubleshooting Guide

Read more “DC Motor Drive Troubleshooting Guide”

New Product: 3 Phase 400Hz Aerospace/Aircraft Motor Drive

New from Invention House: 3-Phase, 400Hz capable variable frequency drive (VFD)400 hz aircraft variable frequency drive

Currently tested in heavy lift environments exceeding 10,000 lbs, Invention House’s new 400Hz air-crafted rated 3-phase motor drive is ideal for manufacturers seeking a custom variable frequency drive to solve aircraft electric motor control needs. The Invention House 3 Phase Aerospace/Aircraft electrical motor drive is capable of 50/60/400Hz output. This ruggedized drive is designed to withstand temperatures from -40C to +55C and up to 40g shock and 2grms vibration, making it the perfect drive for on-aircraft operations, including helicopter and fixed-wing aircraft.   Our new aircraft-rated drive weighs in at 10lbs(4.5kg) and is significantly lighter than commercial drives of the same rating which generally weigh 30lbs or more, thus creating space and weight savings for improved aircraft operations.

Download the brochure: IH Cutsheet 3PD-25230

Ideal applications for the 3 Phase/400Hz custom motor drive include:

  • Hydraulic Pumps400 hz drive for aircraft hoist heavy lifting
  • Winches
  • Fans
  • Blowers
  • Other 3 Phase On-Board Motor-Driven Electrical Devices

Full Specs:

Hydraulic pumps, Winches
 Fans, Blowers, Compressors
 3-Phase Input – 3-Phase Output
 230VAC – 65Amps rms (20HP)
 50/60/400Hz Output
 -40C to +55C Operation
 40g shock, 2grms vibration

If you are seeking a 400 Hz drive for an aircraft application, contact Invention House today!

When does developing a custom VFD make sense?

Variable frequency drives are now ubiquitous in the motor control industry, with dozens of large to small-scale players offering ready-built products.  With just a  few quick Google searches you can find drives to meet almost any need.  However, like the proverbial square peg in a round hole, sometimes an off-the-shelf drive just doesn’t fit the use case.

To help motor control engineers determine when developing a custom VFD makes sense we have created a Custom VFD Checklist that outlines the considerations we work thought when consulting with our clients.   While we specialize in building custom AC motor drives, going the custom route is not our first choice if it can satisfactorily avoided.

Download our FREE Custom VFD Checklist NowCustom variable frequency drive checklist

There are trade-offs for going down the custom path. You get exactly what you need, but it will typically cost more than off-the-shelf, unless substantial volumes are involved. Cost factors may include non-recurring engineering costs (NRE), UL certification costs if required, packaging costs, and/or higher per-unit costs. There is also a timing factor; anything which must be first engineered and developed naturally takes longer than pulling something off the shelf.  Other considerations include ownership of intellectual property associated with a new drive, assuming it is truly a one-off design.

Case Study – Oil Burner:  Recently Invention House created a custom VFD for an OEM that manufactures oil burners used in HVAC applications.  Our client needed a 110v single phase drive capable of 80Hz to drive the combustion fan of a portable oil burning heater. The burner is a world-ready unit that must be able to operate between -40 and +130F(55C). In addition, it had to be very rugged to withstand truck transport and rough delivery conditions. Invention House designed a single board drive in an open 3″x 2″x 7″ aluminum frame. The drive responds to commands for high and low fire rates (100,000/200,000 btu/hr). It has several on-board relays to energized the fuel solenoids and the fresh air blower. The drive has custom adjustable relay timing to avoid flame outs during transitions and to avoid blasts of cold air to the user. The drive’s main function is to create the correct frequency for the combustion fan. This is done using an on-board altitude sensor that allows the drive to maintain the correct air /fuel ratio. There is also a on-bard tilt sensor for safety. These sensors would have been difficult to do using convention PLC’s and a conventional solution would never have fit in the necessary space. The true befit of the combustion solution came at then end of the development when the specification suddenly changed wanting combustion at 14,000 ft. This required 120hz operation and more voltage. Invention House simply reprogrammed the drive for 120hz and designed an small transformer to boost the input voltage to 160vac. The product was successfully tested at the top of Pike’s Peak and has endured operating many thousand of hours in harsh conditions.

As the above case study illustrates, if your situation is one where unique factors are involved, such as those outlined in our Custom VFD Checklist, then going down the custom path will be a rewarding one.   You end up with a drive tailored to your specific requirements and in the size and shape that fits your design specs. In addition, because the drive is tailored to your product’s specs, there is usually less installation time as the unit comes programmed, tested, and with wiring terminals and other factors that make installation more of a plug and play install.

One remaining important factor to share…gaining a competitive edge.  If your company is competing with similar products and all those products employ off-the-shelf drives, you can gain a competitive edge by going the custom route. Your product will be unique and have a performance curve that beats the competition and helps create stronger vendor-customer bonds.

In summary, don’t be afraid to look at developing a custom variable frequency drive, especially if your product meets one of the 5 key custom VFD decision factors outlined in our free guide.  If you have that round hole situation, build a round drive. You’ll be more satisfied in the end and so will your customers.

Test Meters Have Trouble Reading VFD Output Voltage

Test meters have trouble reading VFD output voltage because an AC motor prefers sinusoidal power, but a variable frequency drive’s output voltage is NOT sinusoidal. As shown below, a VFD’s output voltage is a series square pulses which range from wider to thinner to emulate a sinewave.  The following image represents typical voltage output from a VFD.

Read more “Test Meters Have Trouble Reading VFD Output Voltage”

Controlling Variable Frequency Drive Shock Hazard

Controlling variable frequency drive shock hazard is an important part of proper VFD maintenance and management. The risk of electrical shock stems from the manner in which motor drives assume control of motor voltage supply.   Controlling variable frequency drive shock hazard

Electrical Shock Origination & Control

When a drive is energized but disabled, and the motor is stopped, it’s NOT open…there is no air between the line voltage and the motor leads. To safely work on the motor, the line input to the VFD must be opened. Some newer drives have a feature called “safe torque off,” which also is NOT a contractor. When the “safe torque off ” is active and the motor is stopped, the power connection is NOT open…there is no air between the line voltage and the motor leads. Controlling variable frequency drive shock hazard can be accomplished by opening the line input to the VFD. “Safe torque off ” simply interrupts the gate power to the output transistors so that rotation is not possible. The transistor and the diodes still connect the motor leads to the line voltage, which can cause a shock hazard unless the line input to the VFD is opened.

Arc Flash Implications

The electrical shock potential from a VFD is distinct but potentially related to arc flash. Arc flash, also sometimes referred to as “flash over”, stems from an arc fault, which is a severe instantaneous electrical discharge that results from a low-impedance connection through air to ground or another voltage phase change in a electrical systems.  A gaseous fire ball is created filling the space immediately in front of an open cabinet. Arc flash is deadly and all precautions must be made to prevent it.

Controlling variable frequency drive electrical shock conditions is a #1 priority at Invention House.  We take great precaution when building and working on custom AC motor drive solutions for our OEM and military clients.

Consult the users guide, website FAQ page or the help center of your VFD manufacturer before working on any VFD.

5 Critical Variable Frequency Drive Limitations

There are 5 critical variable frequency drive (VFD) limitations that should be considered when selecting the proper VFD for motor speed control applications.

A VFD is an electronic circuit that controls the speed of an electric motor by adjusting both the voltage and the frequency applied to the motor. Prior to VFDs, motor speed was controlled through inefficient voltage regulators (think light dimmer switch!) or mechanical means – pulleys, gears, or transmission systems. The original VFDs filled large cabinets and were unreliable. Today, VFDs are smaller than a shoe box, reliable, and are used in almost all industrial applications, pumps, fans, conveyors, machining, compressors, etc.  VFDs can also be employed on linear motors to generate vibration, which is often critical in “shaker machines” used in product separation and packaging. However, VFD’s are not miracle workers and there are important limitations. If you are already using VFDs or are considering their use for the first time, these limitations should be considers.  Learn more facts about VFDs in my paper 5 Basic VFD Facts.

Single Phase OEM Drive Designed by Invention House

A VFD can make a motor run slower than rated speed, however a major point of consideration at low speed is cooling. A typical electric motor is cooled by a fan on its shaft; at low speed the fan moves less air and at some point the motor will over heat. This is generally not a problem with centrifugal loads such as fans, pumps, and blowers because the torque required by the load drops drastically with decreasing speed. In this case, the motor is doing less work, and there is less waste heat to dispose of.

A VFD can drive a motor faster than its nameplate speed, however, above the rated speed, the motor looses torque (twisting force). At higher speeds, less and less torque is possible. The maximum continuous power (speed times torque) is limited by the motor design, therefore a VFD cannot deliver more power than which the motor is thermally capable.

A VFD can also make a motor more efficient, but only at reduced load and/or reduced speed. A drive system will not use less power when the motor is running at rated speed and rated load. In fact, it uses slightly more due to the losses within the drive.

A VFD can make a motor reverse without the use of contactors, but it can’t make the reversal faster than the combination of the motor’s max torque and the load’s inertia allows.

A VFD can make a motor produce more than its rated torque but only briefly. The amount of time is limited by either the drive’s overload capacity or the motor’s thermal capacity. A drive cannot make a motor produce more than its maximum torque. Max torque or Stall Torque is generally not shown on the motor’s nameplate. The iron in the motor can only sustain a certain amount of magnetic flux density, even if iron is driven harder, the flux density will not go up. The amount of torque a motor creates at the flux limit is the most torque that can be achieved.